# Oral, Once-Daily LB-102: Recent Positive Results From a Phase 2 Study in Patients With Acute Schizophrenia

Anna Eramo,<sup>1</sup> Leslie Callahan,<sup>1</sup> Niccolo Bassani,<sup>2</sup> Baker P. Lee,<sup>1</sup> Zachary Prensky,<sup>1</sup> Andrew R. Vaino,<sup>1</sup> John M. Kane<sup>3</sup> <sup>1</sup>LB Pharmaceuticals Inc, New York, NY, USA; <sup>2</sup>Worldwide Clinical Trials, Nottingham, UK; <sup>3</sup>The Donald and Barbara Zucker School of Medicine, Hempstead, NY, USA

# **LB-102**

- LB-102 (*N*-methyl amisulpride) is a novel  $D_2/D_3/5$ -HT<sub>7</sub> receptor antagonist and potential first-in-class benzamide antipsychotic under development for schizophrenia (Figure 1).
- Preclinical assays have shown equal, if not improved, receptor binding, pharmacokinetics, and behavioral modification properties for LB-102 compared to amisulpride with as good or better efficacy when compared to amisulpride in animal schizophrenia models (Figure 2).
- A phase 1, double-blind, placebo-controlled study (NCT04187560) demonstrated that LB-102 was generally safe and welltolerated in 64 healthy volunteers.<sup>3</sup>
- A phase 1, open-label PET study (NCT04588129) highlighted that LB-102 afforded dopamine receptor occupancy (RO) under steady-state conditions in the desired range of 60% to 80% required to treat schizophrenia in doses as low as 50 mg/day, and in a similar effect range as observed with amisulpride 400 mg (Data not shown) (Figure 3).<sup>4</sup>

### Figure 1. LB-102: A Novel Benzamide to Treat Psychiatric Disorders LB-102 Amisulpride





### Figure 2. Dopamine Receptor Occupancy of LB-102 Compared With Amisulpride in Mice Amisulpride LB-102 No blocking



PET scans taken 140 minutes after dosing either 100 mg/kg amisulpride or LB-102.

### Figure 3. Target Receptor Occupancy Engagement With LB-102



# **NOVA<sup>1</sup>: Phase 2 Study**

- NOVA<sup>1</sup> was a phase 2, multicenter, randomized, double-blind, placebo-controlled trial (ClinicalTrials.gov: NCT06179108) conducted in the United States (Figure 4).
- Study schedule included:
- Up to 14-day inpatient screening/washout period
- 28-day inpatient treatment period
- 5-day inpatient stabilization period
- Outpatient safety follow-up visit ~2 weeks post-treatment Eligible participants were randomized (3:3:3:1) to oral once-
- daily placebo, LB-102 50 mg, LB-102 75 mg, or LB-102 100 mg, with the 100 mg dose considered exploratory.

### **Key Inclusion Criteria**

- Adults 18–55 years diagnosed with schizophrenia and requiring hospitalization or continued hospitalization for a current acute exacerbation of psychotic symptoms
- Positive and Negative Syndrome Scale (PANSS) total score of 80–120

# Results

### **Disposition**

- 359 participants were randomized and included in the safety and intent-to-treat populations.
- 293 participants (82%) completed Week 4 - 261 participants (73%) completed the trial
- Demographics and baseline characteristics were similar across treatment arms and reflective of an inpatient schizophrenia population (Table 1).
- The most commonly co-occurring medical conditions were insomnia (n=266, 74%), anxiety (n=211, 59%), headache (n=144, 40%), depression (n=118, 33%), and agitation (n=108, 30%).

### Efficacy

- LB-102 met the primary endpoint, with all doses being
- statistically superior to placebo (**Figure 5**). Least-squares mean changes from baseline to Week 4 in PANSS total score were:
- Placebo, -9.3
- LB-102 50 mg, -14.3 (*p*=0.0009 vs placebo;
- effect size=0.61) − LB-102 75 mg, −14.0 (*p*=0.0022 vs placebo;
- effect size=0.41) LB-102 100 mg, -16.1 (nominal p=0.0017 vs placebo; effect size=0.83)
- Secondary analysis of change from baseline to Week 4 of PANSS positive symptoms demonstrated a statistically significant reduction for LB-102 (all doses) compared to placebo (Figure 7).

- PANSS positive subscale item scores of ≥4 on at least two key items
- Clinical Global Impression of Severity (CGI-S) score of ≥4
- **Key Exclusion Criteria**
- Schizophrenia diagnosed ≤1 year ago
- History of treatment resistance
- Improvement of ≥20% from screening to baseline in PANSS total score

### **Outcomes and Analyses**

- Primary efficacy endpoint: Change from baseline to Week 4 in PANSS total score Secondary efficacy endpoints: Change from baseline to
- Week 4 in CGI-S score, changes from baseline to Week 4 in PANSS positive and negative subscale scores
- Safety: Adverse event reporting and other safety assessments
- A treatment effect on PANSS total score was observed with LB-102 (all doses) as early as Week 1 and maintained throughout the 4-week treatment period (Figure 5).
- Analysis of change from baseline to Week 4 on the CGI-S score identified a statistically significant improvement for LB-102 (all doses) compared to placebo (Figure 6).

### Safety and Tolerability

- Treatment-emergent adverse events (TEAEs) were reported in 56% (placebo), 69% (50 mg), 57% (75 mg), and 75% (100 mg) of participants (**Table 2**).
- 10 participants (2.8%) experienced a TEAE that led to treatment withdrawal (**Table 2**). - 5 participants (1.4%) experienced a serious TEAE (**Table 2**).
- Insomnia was the most commonly reported TEAE across treatment arms, followed by headache, anxiety, and agitation (**Table 3**).
- A total of 25 participants treated with LB-102 experienced hyperprolactinemia or increased blood prolactin (**Table 3**). 3 experienced galactorrhea (50 mg, n=2; 75 mg, n=1) - 1 experienced breast enlargement (100 mg)
- 1 experienced erectile dysfunction (100 mg)
- There was an increase in weight across all treatment arms by the end of Week 4 (placebo, 2.1 kg; 50 mg, 4.6 kg; 75 mg, 3.5 kg; 100 mg, 3.7 kg). Increases in weight and BMI were not associated with any
- change in cardiovascular or metabolic markers.
- There was no change in suicidal ideation or behavior at the end of Week 4, as measured by the Columbia–Suicide Severity Rating Scale (C-SSRS).

%ID/g



Subjects scanned 2.5, 50 mg LB-102 afforded same dopamine RO as



Initiation

## Table 1. Demographics and Baseline Characteristics

|                                                   |                 | Placebo<br>(n=108) | 50 mg<br>(n=107) | 75 mg<br>(n=108) | 100 mg<br>(n=36) | Overall<br>(N=359) |
|---------------------------------------------------|-----------------|--------------------|------------------|------------------|------------------|--------------------|
| Age at informed consent, mean (SD)                |                 | 39.1 (9.1)         | 39.0 (9.6)       | 39.2 (9.2)       | 39.1 (9.2)       | 39.1 (9.3)         |
| <b>Sex,</b> n (%)                                 | Male            | 85 (79%)           | 87 (81%)         | 90 (83%)         | 28 (78%)         | 290 (81%)          |
|                                                   | Female          | 23 (21%)           | 20 (19%)         | 18 (17%)         | 8 (22%)          | 69 (19%)           |
| Ethnicity, n (%)                                  | Latino          | 17 (16%)           | 12 (11%)         | 8 (7%)           | 6 (17%)          | 43 (12%)           |
| <b>Race,</b> n (%)                                | White           | 24 (22%)           | 17 (16%)         | 18 (17%)         | 9 (25%)          | 68 (19%)           |
|                                                   | Black           | 80 (74%)           | 87 (81%)         | 83 (77%)         | 25 (69%)         | 275 (77%)          |
|                                                   | Asian           | 1 (1%)             | 0                | 2 (2%)           | 0                | 3 (1%)             |
|                                                   | Native American | 0                  | 0                | 2 (2%)           | 0                | 2 (1%)             |
| Weight at baseline (kg), mean (SD)                |                 | 85.6 (17.2)        | 84.0 (19.5)      | 88.4 (18.5)      | 85.9 (18.0)      | 86.0 (18.4)        |
| BMI at baseline (kg/m <sup>2</sup> ), mean (SD)   |                 | 28.2 (5.2)         | 27.4 (6.0)       | 28.8 (5.6)       | 28.0 (6.0)       | 28.1 (5.6)         |
| Baseline PANSS total score at baseline, mean (SD) |                 | 93.8 (8.2)         | 93.9 (7.5)       | 93.6 (7.8)       | 93.9 (9.0)       | _                  |
| Years since diagnosis, mean (range)               |                 | 16.4 (2–41)        | 15.2 (2–38)      | 16.2 (2–39)      | 13.5 (2–36)      | 15.8 (2–41)        |

avir, body mass index, PANSS, Positive and Negative Syndrome Scale, SD, standard devia



Analyzed using a mixed model for repeated measures (MMRM) that included treatment, visit, treatment-by-visit interaction, and study site as categorical effects, and baseline PANSS total score as continuous covariate. LS, least squares; PANSS, Positive and Negative Syndrome Scale; SE, standard error.

### Presented at

American Society of Clinical Psychopharmacology (ASCP) May 27–30, 2025

Mentally III

Percentages may not sum to 100% due to rounding. CGI-S, Clinical Global Impressions–Severity of illness.

Improvement in Disease Severity

→ Placebo (n=108) → LB-102 50 mg (n=107) → LB-102 75 mg (n=108) → LB-102 100 mg (n=36)

### LB-102 50 mg Placebo (n=107) (n=108)



LS, least squares; PANSS, Positive and Negative Syndrome Scale.

### Table 2. Summary of Treatment-Emergent Adverse Events (TEAEs)

| Participants, n (%)                  | Placebo<br>(n=108) | 50 mg<br>(n=107) | 75 mg<br>(n=108) | 100 mg<br>(n=36) | Overall<br>(N=359) |  |
|--------------------------------------|--------------------|------------------|------------------|------------------|--------------------|--|
| Any adverse event                    | 67 (62%)           | 77 (72%)         | 68 (63%)         | 28 (78%)         | 240 (67%)          |  |
| Any TEAE                             | 60 (56%)           | 74 (69%)         | 62 (57%)         | 27 (75%)         | 223 (62%)          |  |
| Any treatment-related TEAE           | 23 (21%)           | 49 (46%)         | 34 (31%)         | 17 (47%)         | 123 (34%)          |  |
| Any TEAE leading to early withdrawal | 2 (1.9%)           | 2 (1.9%)         | 3 (2.8%)         | 3 (8.3%)         | 10 (2.8%)          |  |
| Any severe TEAE                      | 3 (2.8%)           | 0                | 1 (0.9%)         | 1 (2.8%)         | 5 (1.4%)           |  |
| Any serious TEAE                     | 2 (1.9%)           | 1 (0.9%)         | 1 (0.9%)         | 1 (2.8%)         | 5 (1.4%)           |  |
| Any serious treatment-related TEAE   | 0                  | 1 (0.9%)         | 1 (0.9%)         | 0                | 2 (0.6%)           |  |
| Any TEAE leading to death            | 1 (0.9%)           | 0                | 0                | 0                | 1 (0.3%)           |  |

### Table 3. Treatment-Emergent Adverse Events Reported by ≥5% in Any Treatment Arm

| _                                      |                    | -                |                  |                  |
|----------------------------------------|--------------------|------------------|------------------|------------------|
| Participants, n (%)                    | Placebo<br>(n=108) | 50 mg<br>(n=107) | 75 mg<br>(n=108) | 100 mg<br>(n=36) |
| Insomnia                               | 24 (22.2%)         | 27 (25.2%)       | 23 (21.3%)       | 14 (38.9%)       |
| Headache                               | 10 (9.3%)          | 12 (11.2%)       | 9 (8.3%)         | 2 (5.6%)         |
| Anxiety                                | 9 (8.3%)           | 10 (9.3%)        | 9 (8.3%)         | 4 (11.1%)        |
| Agitation                              | 10 (9.3%)          | 11 (10.3%)       | 6 (5.6%)         | 4 (11.1%)        |
| Weight increased                       | 4 (3.7%)           | 13 (12.1%)       | 8 (7.4%)         | 3 (8.3%)         |
| Hyperprolactinemia <sup>1</sup>        | 0                  | 11 (10.3%)       | 8 (7.4%)         | 6 (16.7%)        |
| Blood creatine phosphokinase increased | 3 (2.8%)           | 4 (3.7%)         | 1 (0.9%)         | 2 (5.6%)         |
| Alanine aminotransferase increased     | 1 (0.9%)           | 3 (2.8%)         | 1 (0.9%)         | 2 (5.6%)         |
| Somnolence                             | 0                  | 1 (0.9%)         | 4 (3.7%)         | 2 (5.6%)         |
| Constipation                           | 0                  | 4 (3.7%)         | 1 (0.9%)         | 2 (5.6%)         |

<sup>1</sup>Sum of the preferred terms "hyperprolactinemia" and "blood prolactin increased."

### W65



Scan the QR code to receive a PDF of the poster

# CONCLUSION

LB-102, a novel and potentially first-in-class benzamide D<sub>2</sub>/D<sub>3</sub>/5-HT<sub>7</sub> receptor antagonist, demonstrated statistically significant efficacy on PANSS improvement and was generally safe and well-tolerated.

# DISCUSSION

- This phase 2 clinical trial provided rigorous evidence demonstrating the efficacy and safety of LB-102 for the treatment of adults with acute schizophrenia, supporting the continued clinical development of LB-102 for schizophrenia.
- A phase 3 clinical development program in schizophrenia is currently being planned.

### References

- **1.** Grattan V, et al. ACS Omega. 2019;4(9):14151-4.
- 2. Neill JC, et al. Eur Neuropsychopharmacol. 2017;27(S4):S922-3 **3.** Biernat L, et al. *Psychopharmacology (Berl*). 2022;239(9):3009-18.
- 4. Wong DF, et al. Neuropsychopharmacology. 2024;50(2):372-7.

### Acknowledgments

Medical writing and poster development support were provided by The Medicine Group, LLC (New Hope, PA, USA) in accordance with Good Publication Practice guidelines.

### Funding

This study and poster development support were sponsored by LB Pharmaceuticals Inc, New York, NY, USA.

### Disclosures

AE, LC, BL, and AV are full-time employees and shareholders of LB Pharmaceuticals. **NB** serves as a consultant to LB Pharmaceuticals. **ZP** is a co-founder and former Chief Executive Officer of LB Pharmaceuticals; he currently serves as a member of the Board of LB Pharmaceuticals. JK has served as a consultant to, received honoraria, received travel support, and/or participated in speakers' bureaus for AbbVie, Alkermes, Allergan, Boehringer-Ingelheim, Bristol Meyer-Squibb, Cerevel, Dainippon Sumitomo, HealthRhythms, HLS Therapeutics, Indivior, Intracellular Therapies Janssen Pharmaceutical, Johnson & Johnson, LB Pharmaceuticals Lundbeck, Mapi, Maplight, Merck, Minerva, Neurocrine, Newron, Novartis, NW PharmaTech, Otsuka, Roche, Saladax, Sunovion, and Teva; has participated on advisory boards for AbbVie, Alkermes, BMS, Boehringer-Ingelheim, Cerevel, Click Therapeutics, Lundbeck, Merck, Newron, Novartis, Otsuka, Sumitomo, Terran, and Teva; has received grant support from Lundbeck, Janssen, Otsuka, and Sunovion; holds stock or stock options in HealthRhythms, LB Pharmaceuticals, Medincell, North Shore Therapeutics, NW Pharmatech, Reviva, Saladax, Terran, and Vanguard Research Group; and receives royalties from UpToDate.